InterviewSolution
Saved Bookmarks
| 1. |
Find \(\int \frac{e^{-cot^{-1}x}}{1+x^2}\).(a) \(e^{-cot^{-1}x}+C\)(b) \(e^{-2cot^{-1}x}+C\)(c) \(e^{-tan^{-1}x}+C\)(d) \(e^{-cot^12x}+C\)This question was addressed to me during a job interview.Enquiry is from Methods of Integration-1 in section Integrals of Mathematics – Class 12 |
|
Answer» CORRECT option is (a) \(E^{-cot^{-1}x}+C\) The explanation: Let \(-cot^{-1}x\)=t Differentiating w.r.t x, we GET –\(\left (-\frac{1}{1+x^2}\right )dx=dt\) \(\frac{1}{1+x^2} dx=dt\) \(\INT \frac{e^{-cot^{-1}}x}{1+x^2} dx=\int e^t \,dt\) =e^t Replacing t with -cot^-1x, we get \(\int \frac{e^{-cot^{-1}}x}{1+x^2} dx=e^{-cot^{-1}}x+C\) |
|