1.

Find \(\int sin^2⁡(8x+5) dx\)(a) \(\frac{x}{4}+\frac{sin⁡(16x+10)}{32}+C\)(b) \(\frac{x}{2}-\frac{cos⁡(16x+10)}{32}+C\)(c) \(\frac{x}{2}-\frac{sin⁡(16x+10)}{32}+C\)(d) \(\frac{x}{2}+\frac{cos⁡(16x+5)}{32}+C\)The question was asked in unit test.I'd like to ask this question from Methods of Integration-2 in portion Integrals of Mathematics – Class 12

Answer»

The CORRECT option is (c) \(\frac{X}{2}-\frac{sin⁡(16x+10)}{32}+C\)

The explanation: \(\INT sin^2⁡(8x+5) DX=\int \frac{1-cos⁡2(8x+5)}{2} dx=\int \frac{1}{2} dx-\frac{1}{2} \int cos(16x+10)dx\)

=\(\frac{x}{2}-\frac{1}{2} (\frac{sin⁡(16x+10)}{16})=\frac{x}{2}-\frac{sin⁡(16x+10)}{32}+C\)



Discussion

No Comment Found

Related InterviewSolutions