Saved Bookmarks
| 1. |
Find Integrating factor of dy = {[e^(x-y)] ( e^x-e^y)} dx is |
|
Answer» Answer: CORRECT option is C e y =c.exp(−e )+e x −1 dx dy
=e x−y (e x −e y ) dx dy
= e y
e x
(e x −e y ) e y
dx dy
=e 2x −e x e y
e y
dx dy
+e x e y =e 2x
Put e y =v e y
dx dy
= dx dv
e y
dx dv
+ve x =e 2x
which is a linear differential eqn with v as dependent variable. Here, P=e x ;Q=e 2x
Integrating factor $$I.F.=e^\int{e^x}dx =e^{e^x}$$ So, the solution of GIVEN differential eqn is v.e e x
=∫e e x
e 2x dx+C Put e x =t in the above integral ⇒e x dx=dt v.e e x
=∫e t tdt+C ⇒e y e e x
=te t −e t +C ⇒e y e e x
=e x e e x
−e e x
+C ⇒e y =e x −1+Ce −e x |
|