InterviewSolution
Saved Bookmarks
| 1. |
Find k if the function f(x) is defined by `f(x)=kx(1-x),"for "0ltxlt1` =0 , otherwise, is the probability density function (p.d.f.) of a random varible (r.v) X. Also find P `(Xlt(1)/(2))` |
|
Answer» Since the givne function is p.d.f., we get `int_(0)^(1)f(x).dx=1` `:.int_(0)^(1)kx(1-x).dx=1` `:.int_(0)^(1)(x-x^(2)).dx=1` `:.k[(x^(2))/(2)-(x^(3))/(3)]^(1)=1` `:.(1^(2))/(2)-(1^(3))/(3)=(1)/(k)` `:.(1)/(6)=(1)/(k)` `:.k=6` Now `p[xlt(1)/(2)]=int_(0)^(1//2)f(x)dx` `=int_(0)^(1//2)kx(1-x).dx` `=int_(0)^(1//2)6x(1-x).dx` `int_(0)^(1//2)(6x-6x^(2)).dx` `=[(6x^(2))/(2)-(6x^(3))/(3)]_(0)^(1//2)` `=[3x^(2)-2x^(3)]_(0)^(1//2)` `=3((1)/(2))^(2)-2((1)/(2))^(3)` `=(3)/(4)-(1)/(4)=(2)/(4)=(1)/(2)` `p[xlt(1)/(2)]=(1)/(2)` |
|