

InterviewSolution
1. |
Find matrices A and B, if A + B = \(\begin{bmatrix}1&0 & 2 \\[0.3em]5& 4 & -6\\[0.3em]7 & 3& 8\end{bmatrix}\) and A - B = \(\begin{bmatrix}-5&-4 & 8 \\[0.3em]11& 2 & 0\\[0.3em]-1 & 7& 4\end{bmatrix}.\) A + B = [(1,0,2)(5,4,-6)(7,3,8)]A - B = [(-5,-4,8)(11,2,0)(-1,7,4)]. |
Answer» Add (A + B) and (A - B) We get (A + B) + (A - B) = \(\begin{bmatrix}1& 0& 2 \\[0.3em]5 & 4 &-6 \\[0.3em]7 & 3 & 8\end{bmatrix}\) + \(\begin{bmatrix}-5& -4& 8 \\[0.3em]11 & 2 &0 \\[0.3em]-1 & 7 & 4\end{bmatrix}\) 2A = \(\begin{bmatrix}-4& -4& 10 \\[0.3em]16 & 6 &-6 \\[0.3em]6 & 10 & 12\end{bmatrix}\) A = \(\begin{bmatrix}-2& -2& 5 \\[0.3em]8 & 3 &-3 \\[0.3em]3 & 5 & 6\end{bmatrix}\) Now Subtract (A - B) from (A + B) (A + B) - (A - B) = \(\begin{bmatrix}1& 0& 2 \\[0.3em]5 & 4 &-6\\[0.3em]7 & 3& 8\end{bmatrix}\) - \(\begin{bmatrix}-5& -4& 8 \\[0.3em]11 & 2 &0\\[0.3em]-1 & 7& 4\end{bmatrix}\) (2B) = \(\begin{bmatrix}6& 4& -6 \\[0.3em]-6 & 2 &-6\\[0.3em]8 & -4& 4\end{bmatrix}\) B = \(\begin{bmatrix}3& 2& -3 \\[0.3em]-3 & 1 &-3\\[0.3em]4 & -2&2\end{bmatrix}\) Conclusion: A = \(\begin{bmatrix}-2& -2&5 \\[0.3em]8 & 3 &-3\\[0.3em]3 & 5&6\end{bmatrix},\) B = \(\begin{bmatrix}3& 2&-3 \\[0.3em]-3 & 1 &-3\\[0.3em]4 & -2&2\end{bmatrix}\) |
|