

InterviewSolution
Saved Bookmarks
1. |
Find non-zero values of `x`satisfying the matrix equation:`x[2x2 3x]+2[8 5x4 4x]=2[x^2+8 24 10 6x]` |
Answer» Given that `x[(2x, 2),(3,x)]+2[(8, 5x),(4,4x)]=2 [(x^(2)+8,24),(10, 6x)]` `implies [(2x^(2), 2x),(3x,x^(2))]+[(16,10x),(8,8x)]=[(2x^(2)+16, 48),(20,12x)]` `implies [(2x^(2)+16, 2x+10x),(3x+8, x^(2)+8x)]=[(2x^(2)+16,48),(20,12x)]` Comparing the elements, we get `2x+10x=48` `implies 12x=48` `implies x=4` This value of x also satisfies the equations `3x+8=20` and `x^(2)+8x=12x` |
|