InterviewSolution
Saved Bookmarks
| 1. |
Find number of solution of the equation `2 sin x+5 sin^(2) x+8sin^(3)x+... oo=1` for `x in [0, 2pi]`. |
|
Answer» Correct Answer - Two solutions We have `2 sin x+5 sin^(2)x+8sin^(3)x+...=1` ...(1) `:. 2sin^(2)x+5 sin^(3) x+...=sin x` ...(2) Substracting (2) from (1), we get `2 sin x+3(sin^(2)x+sin^(3)x+...)=1-sin x` `:. 2sin x+ (3 sin^(2) x)/(1- sin x)=1-sin x` `rArr 2 sin x-2 sin^(2)x+3 sin^(2)x=1-2 sin x+sin^(2)x` `rArr sin x=1/4` So there will be two solutions. |
|