InterviewSolution
Saved Bookmarks
| 1. |
Find the angle between the pair of tangents fromthe point (1,2) to the ellipse `3x^2+2y^2=5.` |
|
Answer» The combined eqution of the pair of tangents drawn from (1,2) ot the ellipse `3x^(2)+2y^(2)=5` is `(3x+4y-5)^(2)=(3x^(2)+3y^(2)-5)(3+8-5)[ "Using" T^(2)=SS_(1)]` `or 9x^(2)-24xy-4y^(2)+.....=0` If angle between pair of lines is `theta`, then `tan theta=(2sqrt(h^(2)-ab))/(a+b)` where a=9,h12, b=-4 `:. tan theta =(12)/(sqrt(5))` `rArr theta = tan^(-1).(12)/(sqrt(5))` |
|