Saved Bookmarks
| 1. |
Find the area of hexagon ABCDEF in which BL IAD, CM LAD, EN LAD and FP 1 AD such that AP = 6 cm, PL = 2 cm.LN = 8 cm, NM = 2 cm, MD = 3 cm, FP = S cm. EN = 12 cm.BL = 8 cm and CM = 6 cm. |
|
Answer» -step explanation:The given details are,BL⊥AD, CM⊥AD, EN⊥AD and FP⊥AD $$AP=6 cm, PL= 2 cm, LN=8 cm, NM=2 cm, MD=3 cm, FP=8 cm, EN=12 cm. BL= 8 cm , CM=6cm.AL=AP+PL=6+2=8cmPN=PL+LN=2+8=10cmLM=LN+NM=8+2=10cmND=NM+MD=2+3=5cmBy Using the formula,Area (hex. ABCDEF) =area(△APF)+area(△DEN)+area(△ABL)+area(△CMD)+area(Trap.PNEF)+area(Trap.LMCB)Area of triangle =1/2×base×heightArea of trapezium =1/2×(sum of parallel sides)×height∴lets calculate,Area(△APF)=1/2(AP)×(FP)=1/2×6×8=24cm2 Area(△DEN)=1/2(ND)×(EN)=1/2×5×12=30cm2Area(△ABL)=1/2(AL)×(BL)=1/2× |
|