

InterviewSolution
Saved Bookmarks
1. |
Find the cartesian form of the equation of the plane. `vecr=(lambda-mu)hati+(1-mu)hatj+(2lambda+3mu)hatk` |
Answer» `vecr=(lambda-mu)hati+(1-mu)hatj+(2lambda+3mu)hatk` `rArr vecr= hatj+lambda(hati+2hatk)+mu(-hati-hatj+3hatk)` Comparing with equation `vecr = veca+lambdavecb+muvecc` `veca = hatj, vecb=hati+2hatk` and `vecc = -hati+hatj+3hatk` `:. vecn=vecbxxvecc=|{:(hati,hatj,hatk),(1,0,2),(-1,-1,3):}|` `= hati(0+2)-hatj(3+2)hatk(-1-0)` `=2hati-5hatj-hatk` Equation of plane in scalar product form `vecr.vecn = veca.vecn` `rArr (xhati+yhatj+zhatk).(2hati-5hatj-hatk)` `= hatj.(2hati-5hatj-hatk)` `rArr 2x-5y - z = - 5`. |
|