

InterviewSolution
Saved Bookmarks
1. |
Find the characteristic equation of the matrix` A= [(2,1),(3,2)]` and hence find its inverse using Cayley-hamilton theorem. |
Answer» Charaacteritic equation is `|A-lambdaI|=0rArr [(2-lambda,1),(3,2-lambda)]=0` `rArr (2-lambda)^(2)-3=0` `rArr lambda^(2)-4lambda+1=0` therefore Cayley-hamiltion theorem, `A^(2)-4A+I=O or I=4A-A^(2)` Multiplying by` A^(-1)`, we get ` A^(-1)=4A^(-1)A-A^(-1)A A` =` 4I-IA=4I-A` =`4[(1,0),(0,1)]-{(2,1),(3,2)]` ` [(2,-1),(-3,2)]` |
|