

InterviewSolution
Saved Bookmarks
1. |
Find the coefficient of `t^8` in the expansion of `(1+2t^2-t^3)^9`.A. `1680`B. `2140`C. `2520`D. `2730` |
Answer» Correct Answer - C `(c )` `((1+2t^(2))-t^(3))^(9)` `="^(9)C_(0)(1+2t^(2))^(9)-^(9)C_(1)(1+2t^(2))^(8)*t^(3)+^(9)C_(2)(1+2t^(2))^(7)*t^(6)-^(9)C_(3)(1+2t^(2))^(6)*t^(9)+.....-^(9)C_(9)(t^(3))^(9)` `:.` Coefficient of `t^(8)` in the expansion of `(1+2t^(2)-t^(3))^(9)` `=^(9)C_(0)("coefficient of" t^(8) "in" (1+2t^(2))^(9)) -^(9)C_(1)("coefficient of" t^(5) "in" (1+2t^(2))^(8))+^(9)C_(2)("coefficient of"t^(2) "in" (1+2t^(2))^(7))` `=^(9)C_(9)*^(9)C_(4)2^(4)-0+^(9)C_(2)*^(7)C_(1)*2` `=2520` |
|