InterviewSolution
Saved Bookmarks
| 1. |
Find the coefficient of `x^r` in the expansion of `1 +(1 + x) + (1 + x)^2 +.......+ (1 + x)^n`.A. `""^(n)C_(r)`B. `""^(n+1)C_(r )`C. `""^(n+1)C_(r+1)`D. none of these |
|
Answer» Correct Answer - c We have, `1 + (1 + x)+(1+x)^(2) +...+ (1 +x)^(n) = (1 - (1 +x)^(n+1))/(1-(1 +x))` `rArr 1 = - (1)/(x) { 1 - (1 - x)^(n+1)}` `rArr 1 = (1)/(x) (1 + x)^(n+1) - (1)/(x)` `therefore ` Coefficient of `x^(r)` in `{ 1 + (1 + x) + (1 + x)^(2) +... + (1 + x)^(n)}` = Coefficient of `x^(r)` in `{( (1 +x)^(n+1))/(x)- (1)/(x)}` ` = ""^(n-1)C_(r+1!)` |
|