1.

Find the constant term in the expansion of `(sqrtx+1/(3x^2))^10`.A. 5B. 8C. 45D. 90

Answer» Correct Answer - A
Let `r^(th)` term is independent of x.
`T_(r) = .^(n)C_(r)x^(r)y^(n-r)`
`=.^(10)C_(r)(sqrt(x))^(r)((1)/(3x^(2)))^(10-r)`
`=.^(10)C_(r)((1)/(3))^(10-r).(sqrt(x))^(r)((1)/(x^(2)))^(10-r)`
Equating the coefficient of x to zero.
`rArr x^(r//2).x^(-2(10-r)=x^(0)`
`rArr (r)/(2)-20 + 2r = 0`
`rArr (5)/(2)r = 20 rArr r = 8`
Coefficient `=.^(10)C_(r)((1)/(3))^(10-r)`
`=.^(10)C_(8)((1)/(3))^(10-8)=(10xx9)/(2)xx(1)/(9)=5`


Discussion

No Comment Found