1.

Find the derivative of the following from the first principle. (i) sin x^(2) , (ii) cos (x^(2)+ 1) (iii) tan x^(2)

Answer»

Solution :(i)Let `y = sin^(2)X` .
Let `deltay` be an increment in y, corresponding to an increment `deltax`in `x`.
Then, `y + deltay = sin(x+deltax)^(2)`
`rArr deltay = sin(x+deltax)^(2)`
`rArr (deltay)/(deltax) =(sin(x+deltax)^(2) - sinx^(2))/(deltax)`
`rArr (dy)/(dx) = underset(deltaxrarr0)("lim") (deltay)/(deltax)`
`= underset(deltaxrarr0)("lim") (sin(x+deltax)^(2) - sinx^(2))/(deltax)`
`= underset(deltaxrarr0)("lim") (2cos[((x+deltax)^(2) + x^(2))/(2)] sin [((x+deltax)^(2) -x^(2))/(2)])/(deltax)`
[Using `[using(sin C - sinD) = 2 COS((C+D)/(2)) sin((C-D)/(2))]`
`= underset(deltaxrarr0)("lim") 2cos[((x+deltax)^(2) + x^(2))/(2)] (sin[(x+(deltax)/(2)).deltax])/((x+(deltax)/(2)).deltax).(x+(deltax)/(2))`
`2.underset(deltararr0)("lim")cos[((x+deltax)^(2)+x^(2))/(2)].underset(deltararr0)("lim") (sin[(x+(deltax)/(2)).deltax])/((x+(deltax)/(2)).deltax).underset(deltaxrarr0)("lim") (x+(deltax)/(2))`
`= [2xx COSX^(2) xx 1 xx x] = 2x cos x^(2)`.
Hence, `d/(dx) (sinx^(2)) = 2x cos x^(2)`.
(ii) Let `y = cos(x^(2) + 1)` .
Let `deltay` be an increment in y, corresponding to an increment`deltax` in x.
Then, `y + deltay = cos[(x+deltax)^(2) + 1]`
`rArr deltay = cos[(x+deltax)^(2) + 1] - cos(x^(2) + 1)`
`rArr (deltay)/(deltax) = (cos[(x+deltax)^(2) + 1] - cos(x^(2) + 1))/(deltax)`
`rArr (dy)/(dx) = underset(deltaxrarr0)("lim") (deltay)/(deltax)`
`=underset(deltaxrarr0)("lim")({cos[(x+deltax)^(2)+1]-cos(x^(2)+1)})/(deltax)`
`=underset(deltaxrarr0)("lim") (-2sin'[({(x+deltax)^(2) + 1+ (x^(2)+1)})/(2)].sin[({(x+deltax)^(2)+1-(x^(2)+1)})/(2)])/(deltax)`
`=-2.underset(deltaxrarr0)("lim")sin[x^(2)+x.deltax+1+((deltax)^(2))/(2)].(sin[(x+(deltax)/(2)).deltax])/([(x+(deltax)/(2)).deltax]).(x+(deltax)/(2))`
`=-2.underset(deltaxrarr0)("lim")sin[x^(2)+x.deltax+1+((deltax)^(2))/(2)].underset(thetararr0)("lim") (sintheta)/(theta).underset(deltaxrarr0)("lim") (x+(deltax)/(2))`.
where `theta = (x+(deltax)/(2)).deltax` clearly, `[deltaxrarr0] rArr[theta rarr 0]`
`=- 2sin(x^(2)+ 1) xx 1 xx x`
`= -2x sin (x^(2) + 1)`.
Hence, `d/(dx) [cos(x^(2) + 1)] = - 2xsin (x^(2) + 1)`.
(iii) Let `y = TAN^(2) x^(2)`
Let `deltay` be an increment in y, correponding to an increment `deltax`in x.
Then, `y + deltay = tan(x+deltax)^(2)`
`rArr deltaxy = tan(x+deltax)^(2) - tanx^(2)`
`rArr (deltay)/(deltax) = (tan(x+deltax)^(2) - tanx^(2))/(deltax)`
` rArr (dy)/(dx) = underset(deltax rarr0)("lim") (deltay)/(deltax) = underset(deltaxrarr0)("lim") (tan(x+deltax)^(2) - tanx^(2))/(deltax)`
`= underset(deltaxrarr0)("lim") ({(sin(x+deltax)^(2))/(cos(x+deltax)^(2))- (sinx^(2))/(cosx^(2))})/(deltax)`
`= underset(deltaxrarr0)("lim")([sin(x+deltax)^(2)cos x^(2)-cos(x+deltax)^(2)sinx^(2)])/(deltax.cos(x+deltax)^(2).cosx^(2))`
`= underset(deltaxrarr0)("lim")(sin[(x+deltax)^(2)-x^(2)])/(deltax.cos(x+deltax)^(2).cosx^(2))`
`= underset(deltaxrarr0)("lim")(sin[(2x+deltax).deltax])/([(2x+deltax).deltax]) .((2x+deltax))/(cos(x+deltax)^(2).cosx^(2))`
`= (underset(thetararr0)("lim") (sintheta)/(theta)). underset(deltaxrarr0)("lim") (2x+deltax). underset(deltaxrarr0)("lim") (1)/(cos(x+deltax)^(2).cosx^(2))`
where `(2x+deltax). deltax = theta` [clearly, `(deltaxrarr0) rArr (theta rarr0)`]
`= 1 xx 2xxx (1)/(cosx^(2).cosx^(2)) = 2x SEC^(2)x^(2)`.
Hence `d/(dx) (tan x^(2)) = 2 x sec^(2) x^(2)`.


Discussion

No Comment Found