1.

Find the diameter of the circle defined by an equation x2 + y2 - 4x + 4y - 28 = 01. 122. 103. 84. 6

Answer» Correct Answer - Option 1 : 12

Concept:

The general equation of a second-degree curve is 

\(\rm ax^2+2hxy+by^2+2gx+2fy+c =0\)

Where a, b, c, f, g, h are constant 

If a = b ≠ 0 and h = 0, then it represents a circle.

The general equation for the circle 

\(\rm ax^2+ay^2+2gx+2fy+c =0\)

The radius of that circle = \(\rm \sqrt{\left({g\over a}\right)^2+\left({f\over a}\right)^2-\left({c\over a}\right)}\)and center \(\rm \left(-{g\over a},-{f\over a}\right)\)

Area of a circle = πr2

Calculation: 

Given equation of the circle is:

⇒ x2 + y2 - 4x + 4y - 28 = 0

Comparing to the general equation of a circle 

\(\rm ax^2+ay^2+2gx+2fy+c =0\)

a = 1, g = -2, f = 2, c = -28

Radius = \(\rm \sqrt{\left({g\over a}\right)^2+\left({f\over a}\right)^2-\left({c\over a}\right)}\)

⇒ R = \(\rm \sqrt{\left({-2}\right)^2+\left({2}\right)^2-\left({-28}\right)}\)

⇒ R = \(\rm \sqrt{4+4+28}\)

⇒ R = \(\rm \sqrt{36}\) = 6

Diameter = 2R

D =  2 × 6 = 12 



Discussion

No Comment Found

Related InterviewSolutions