Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

What is the equation of circle which touches both the axes and has center on the line x + y = 2?1. x2 + y2 - 2x - 2y + 1 = 02. x2 + y2 + 2x + 2y + 1 = 03. x2 + y2 - 2x - 2y - 1 = 04. None of these.

Answer» Correct Answer - Option 1 : x2 + y2 - 2x - 2y + 1 = 0

Concept:

Equation of the circle having center at (h, k) and radius r is (x - h)2 + (y - k)2 = r2.

 

Calculation:

Let the centre of the circle on the line x + y = 2 be (a, 2 - a).

The circle will touch the x-axis and the y-axis at (a, 0) and (0, 2 - a) respectively.

Using the distance formula:

(2 - a)2 = a2 = r2

Now, the equation of the circle is (x - a)2 + (y - 2 + a)2 = r2 = a2.

Since, (a, 0) is a point on the circle, we must have:

02 + 4 + a2 - 4a = a2

⇒ a = 1

∴ The equation of the circle is (x - 1)2 + (y - 1)2 = 12.

x2 + y2 - 2x - 2y + 1 = 0.

2.

In the given figure PA is the tangent. If PB=AB=4cm and BC=12cm then find AC :

Answer»

http://this is your solution

3.

Find equation of circle concentric with the circle x2 + y2 - 2x - 4y - 5 = 0 and area is double 1. x2 + y2 - 3x - 4y - 10 = 02. x2 + y2 - 2x - 4y - 15 = 03. x2 + y2 - 2x - 4y - 10 = 04. x2 + y2 - 3x - 4y - 15 = 0

Answer» Correct Answer - Option 2 : x2 + y2 - 2x - 4y - 15 = 0

Concept:

The center of the circle x2 + y2 + 2gx + 2fy + c = 0 is (-g, -f) and its radius r is given by r2 = g2 + f2 - c.

 

Calculation:

The given equation of the circle is x2 + y2 - 2x - 4y - 5 = 0.

Comparing it with the general equation of the circle we get:

g = -1, f = -2, c = -5

Using the relation r2 = g2 + f2 - c, we get:

⇒ r2 = (-1)2 + (-2)2 - (-5)

⇒ r = √10

For doubling the area, the radius must become √2 times.

∴ Required radius = √20.

Center is (-g, -f) = (1, 2).

Equation of the circle is: (x - 1)2 + (y - 2)2 = (√20)2

⇒ x2 + y2 - 2x - 4y - 15 = 0.

4.

The centre of the circle passing through (0,0) and (1,0) and touching the circle x2+y2=9 is

Answer»

We have General Equation of Circle is given as 

x2+y2+2gx+2fy+c=0 ---(1)

Since, Circle passes through, (0,0) and (1,0)

Therefore Equation (1) reduces to,

c=0 ---(2)

1+2g+c=0 ---(3),

From (2) and (3), g= -1/2

Also, From As per Question, 

Cicle in equation, (1) touches, another circle having equation, 

x2+y2=(3)2 ---(4)

SInce the center (0,0) of circle (4) lies on the loci of the circle (1), therefore, The radius of the circle (4) must be equal to diameter of circle(1)

hence, 2√g2+f2-c= 3

=> √1/4+f2=3/2

=> f2= 9/4-1/4

=> f2= 2

=> f= ±√2

Hence Centres of Circle (1) is (-g,-f) or (1/2,±√2)

Option (B) is correct

5.

The value of p, for which the equation x2 + y2 - 2px + 6y - 7 = 0 represents a circle of radius 5 units, is:1. ±42. ±33. ±24. ±1

Answer» Correct Answer - Option 2 : ±3

Concept:

The radius of the circle x2 + y2 + 2gx + 2fy + c = 0 is given by r2 = g2 + f2 - c.

 

Calculation:

Comparing the given equation x2 + y2 - 2px + 6y - 7 = 0 with the general equation of the circle we get:

g = -p, f = 3, c = -7

Using the relation r2 = g2 + f2 - c, we get:

⇒ 52 = (-p)2 + 32 - (-7)

⇒ 25 = p2 + 9 + 7

⇒ p2 = 9

⇒ p = ±3

6.

Find the equation of a circle with centre at (2, - 3) and radius 5 units.1. x2 + y2 - 4x + 6y - 12 = 02. x2 + y2 - 4x - 6y - 12 = 03. x2 + y2 + 10x + 2y + 22 = 04. None of these

Answer» Correct Answer - Option 1 : x2 + y2 - 4x + 6y - 12 = 0

Concept:

The equation of circle with centre at (h, k) and radius 'r' is 

(x - h)+ (y - k)= r2

Calculation:

We know that, the equation of circle with centre at (h, k) and radius 'r' is 

(x - h)+ (y - k)= r2

 Here, centre (h, k) = (2, - 3) and radius r = 5 units.

Hence, the equation of a circle with centre at (2, - 3) and radius 5 units is 

(x - 2)+ (y + 3)= 52

\(\rm x^2 - 4x + 4 + y^2 +6y +9 = 25\)

\(\rm x^2 + y^2 - 4x + 6y - 12 = 0 \)

Hence, the equation of a circle with centre at (2, - 3) and radius 5 units is \(\rm x^2 + y^2 - 4x + 6y - 12 = 0 \).

7.

Find the diameter of the circle defined by an equation x2 + y2 - 4x + 4y - 28 = 01. 122. 103. 84. 6

Answer» Correct Answer - Option 1 : 12

Concept:

The general equation of a second-degree curve is 

\(\rm ax^2+2hxy+by^2+2gx+2fy+c =0\)

Where a, b, c, f, g, h are constant 

If a = b ≠ 0 and h = 0, then it represents a circle.

The general equation for the circle 

\(\rm ax^2+ay^2+2gx+2fy+c =0\)

The radius of that circle = \(\rm \sqrt{\left({g\over a}\right)^2+\left({f\over a}\right)^2-\left({c\over a}\right)}\)and center \(\rm \left(-{g\over a},-{f\over a}\right)\)

Area of a circle = πr2

Calculation: 

Given equation of the circle is:

⇒ x2 + y2 - 4x + 4y - 28 = 0

Comparing to the general equation of a circle 

\(\rm ax^2+ay^2+2gx+2fy+c =0\)

a = 1, g = -2, f = 2, c = -28

Radius = \(\rm \sqrt{\left({g\over a}\right)^2+\left({f\over a}\right)^2-\left({c\over a}\right)}\)

⇒ R = \(\rm \sqrt{\left({-2}\right)^2+\left({2}\right)^2-\left({-28}\right)}\)

⇒ R = \(\rm \sqrt{4+4+28}\)

⇒ R = \(\rm \sqrt{36}\) = 6

Diameter = 2R

D =  2 × 6 = 12 

8.

For two circles x2 + y2 = 16 and x2 + y2 - 2y = 0, there is / are1. One pair of common tangent2. Two pair of common tangents3. Three pair of common tangents4. No common tangents

Answer» Correct Answer - Option 4 : No common tangents

CONCEPT :   

The distance between the centres of two circle is less than the difference of their radii then there is no common tangent.

CALCULATION

Equation of first circle x2 + y2   ​= 16 which can be re-written as: x2 + y2  ​= 42

So, the centre of the first circle (0,0) and radius = 4

Equation of second circle  x2 + y2 - 2y = 0  which can be re-written as: x2 + (y-1)2 = 12 

So, the centre of the second circle is: (0,1) and radius = 1

So, the distance between the centres \(d = \sqrt {{0^2} + {1^2}} = 1\)

The difference between the radii of the two circles = |4 - 1| = 3

As we can see that, the distance between the centres < difference of their radii 

We also know that if the distance between the centres of two circle is less than the difference of their radii then there is no common tangent.

So there is no common tangent between the two given circles.

Hence, option D is the correct answer.

9.

Find the equation of the circle which passes through (-1, 1) and (2, 1), and having centre on the line x + 2y + 3 = 0.1. 2x2 + 2y2 - 2x + 7y - 13 = 02. x2 + y2 - 2x + 7y - 13 = 03. 2x2 + 2y2 + 2x + 7y - 13 = 04. x2 + y2 + 2x + 7y - 13 = 0

Answer» Correct Answer - Option 1 : 2x2 + 2y2 - 2x + 7y - 13 = 0

Concept:

Distance Formula: 

The distance 'd' between two points (x1, y1) and (x2, y2) is obtained by using the Pythagoras' Theorem:

  • d2 = (x1 - x2)2 + (y1 - y2)2

Circle:

The equation of a circle with center (a, b) and radius r is given by:

  • (x - a)2 + (y - b)2 = r2

 

Calculation:

Let's say that the points on the circle are A(-1, 1) and B(2, 1),

And the center of the circle is a point O(a, b).

Since, The center lies on the line x + 2y + 3 = 0,

The values a and b must satisfy the above linear equation

⇒ a + 2b + 3 = 0       ----(1)

Also, The distance OA = OB = radius of the circle.

Using the distance formula, we get

(a + 1)2 + (b - 1)2 = (a - 2)2 + (b - 1)2

⇒ (a + 1)2 - (a - 2)2 = 0

⇒ (a + 1 - a + 2)(a + 1 + a - 2) = 0

⇒ (3)(2a - 1) = 0

⇒ \(\rm a = \dfrac12\).

Using equation (1), we get:

\(\rm \dfrac12+2b+3=0\)

⇒ \(\rm b=-\dfrac{7}{4}\).

So, The center of the circle is \(\rm O\left(\dfrac{1}{2},-\dfrac{7}{4} \right)\).

Also, \(\rm r^2=OA^2=\left(\dfrac{1}{2}+1\right)^2+\left(-\dfrac{7}{4}-1\right)^2=\dfrac{9}{4}+\dfrac{121}{16}=\dfrac{157}{16}\).

Now, the equation of the circle will be:

(x - a)2 + (y - b)2 = r2

⇒ \(\rm \left (x - \dfrac12 \right )^2 + \left (y + \dfrac74 \right )^2 = \dfrac{157}{16}\)

⇒ \(\rm x^2 - x+\dfrac14 + y^2 + \dfrac72y+\dfrac{49}{16} = \dfrac{157}{16}\)

⇒ \(\rm x^2 + y^2 + \dfrac{7y}{2}- x+\left (\dfrac{4+49-157}{16} \right ) =0\)

⇒ \(\rm x^2 + y^2 + \dfrac{7y}{2}- x-\dfrac{13}{2} =0\)

∴ The equation of the circle is 2x2 + 2y2 - 2x + 7y - 13 = 0.

10.

The equation of a circle with diameters are 2x - 3y + 12 = 0 and x + 4y - 5 = 0 and area of 154 sq. units is1. x2 + y2 + 6x - 4y - 36 = 02. x2 + y2 + 6x + 4y - 36 = 03. x2 + y2 - 6x + 4y + 25 = 04. None of these

Answer» Correct Answer - Option 1 : x2 + y2 + 6x - 4y - 36 = 0

Concept:

The standard form of the equation of a circle is:

\(\rm (x-h)^2 + (y-k)^2 =R^2\)

where (h,k) are the coordinates and the R is the radius of center of the circle

Area of the circle = π R2

Note: The intersection of the Equation of diameters is center of the circle

 

Calculation:

Given area of circle = 154 sq.units

⇒ π R= 154

⇒ R\(\rm 154* \frac{7}{22}\)

⇒ R = 7

Equation of the diameters

\(\rm 2x-3y+12=0\)                     ...(i)

\(\rm x+4y-5=0\)                      ...(ii)

Intersection of the diameters \(\boldsymbol{\rm (i)-2*(ii)}\)

⇒ \(\rm -11y+22=0\)

⇒ \(\boldsymbol{\rm y=2}\)

Putting back in equation (i),

⇒ \(\rm 2x-3(2)+12=0\)

⇒ \(\rm 2x=6 ⇒ \boldsymbol{\rm x=-3}\)

The center will be (-3, 2)

By the standard equation of circle

\(\rm (x-h)^2 + (y-k)^2 =R^2\)

⇒ \(\rm (x-(-3))^2+(y-2)^2 =7^2\)

⇒ \(\rm (x+3)^2+(y-2)^2 =49\)

⇒ \(\rm x^2+9+6x+y^2 +4 -4y-49=0\)

⇒ \(\boldsymbol{\rm x^2+6x+y^2-4y-36 =0}\) 

11.

The two circles \(\rm x^2+y^2=r^2\) and \(\rm x^2+y^2-6x-16=0\)intersect at two distinct points. Then which one of the following is correct1. r < 22. r > 23. r 2 < r < 34. 2 < r < 8

Answer» Correct Answer - Option 4 : 2 < r < 8

Concept:

Equatiom of circle having centre at (0, 0): \(\rm x^2+y^2=r^2\)

Let center of two circles are C₁ and C₂ and radius are r₁ and r₂.

Two circles will intersect at two points⇒ r1 - r2 < C1C2 < r1 + r

 

Calculation:

Here, C1 : \(\rm x^2+y^2=r^2\), centre of circle = (0, 0) and radius r1 = r

And, C2 : \(\rm x^2+y^2-6x-25=0\)

\(\rm x^2-6x+9+y^2-16-9=0⇒ \rm (x-3)^2+y^2-25=0\)

⇒ \(\rm (x-3)^2+y^2=5^2\)So, centre is (3, 0) and radius, r2 = 5

∴ C1C2 = 3 

Now two circles are intersecting so

 r1 - r< C1C2 < r1 + r

⇒ |r - 5| < 3 < r + 5

⇒ r < 8 and r + 5 > 3 ⇒ r > 2

∴ 2 < r < 8

Hence, option (4) is correct.

12.

The length of the curve y = x3/2 over the interval [0,1] will be:1. \(\frac{1}{{27}}\left[ {{{\left( {13} \right)}^{3/2}} - 8} \right]\) units2. \(\frac{1}{{16}}\left[ {{{\left( {11} \right)}^{3/2}} - 3} \right]\) units3. \(\frac{57}{{5}}\) units4. \(\frac{1}{{9}}\left[ {{{\left( {15} \right)}^{1/2}} - 4} \right]\) units

Answer» Correct Answer - Option 1 : \(\frac{1}{{27}}\left[ {{{\left( {13} \right)}^{3/2}} - 8} \right]\) units

Concept:

The length (L) of curve y(x) in interval (a,b) is given as:

\(L = \mathop \smallint \limits_a^b \sqrt {\left[ {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} \right]dx } \)   -----(1)

Calculation:

Given:

y(x) = x3/2

(a, b) = (0, 1)

\(\frac{{dy\left( x \right)}}{{dx}} = \frac{3}{2}\;{x^{\frac{1}{2}}}\)

From equation (1)

\(I = \mathop \smallint \limits_a^b \sqrt {\left[ {1 + \;\left( {\frac{9}{4}x} \right)} \right]} dx\)

\( = \frac{1}{2}\mathop \smallint \limits_0^1 \sqrt {\left( {4 + 9x} \right).dx} \)

Let, u = 4 + 9x

\(\frac{{\partial u}}{{\partial x}} = 9 = \frac{1}{9}\smallint du = dx\)

\(L = \left( {\frac{1}{2}} \right)\left( {\frac{1}{9}} \right)\mathop \smallint \limits_4^{13} \left( {\sqrt u } \right).du\)

\(L = \;\left( {\frac{1}{2}} \right)\left( {\frac{1}{9}} \right)\left( {\frac{2}{3}} \right){\left[ {{4^{\frac{3}{2}}}} \right]_4}^{13}\)

\(L = \frac{1}{{27}}[\left( {13{)^{\frac{3}{2}}} - {{\left( 4 \right)}^{\frac{3}{2}}}} \right]\)

\(L = \frac{1}{{27}}\left( {{{\left( {13} \right)}^{\frac{3}{2}}} - 8} \right)\)

13.

The circumference of a circle is 264 m. The ratio of area to diameter is: (π = \(\frac{22}7\))1. 662. 843. 1324. 42

Answer» Correct Answer - Option 1 : 66

Concept:

For circle

Area = \({\pi\over 4}× D^2\)

 

Circumference = π × D

The ratio of area to diameter = \({Area\over Diameter}={\pi\over 4}× D \)

where D is the diameter

Calculation:

Given:

Circumference = 264 m, \(π = {22\over 7}\)

we know that

Circumference = π × D

D = \({264\over \pi}=264×{7\over 22}\) m

D = 84 m

The ratio of area to diameter = \({Area\over Diameter}={\pi\over 4}× D \)

The ratio of area to diameter = \({{22\over 7}\over 4}×84 \)

The ratio of area to diameter = \({{22\over 7}\over 4}×84 = 66\)

Hence the ratio of area to diameter is 66 m.

14.

A circle is inscribed in ∆ABC touching AB, BC, and AC at P, Q, and R respectively. If AB = 10 cm. AR = 7 cm and CR = 5 cm, find the length of BC.

Answer»

Given, a circle inscribed in △ABC, such that the circle touches the sides of the triangle.  
Tangents drawn to a circle from an external point are equal.
∴AP=AR=7cm
CQ=CR=5cm
Now, BP=AB−AP=10−7=3cm
∴BP=BQ=3cm
∴BC=BQ+QC=3+5=8cm
∴ the length of BC is 8cm

15.

Area of a circle is 81π and the equations of the normal to the circle are 2y + 3x - 5 = 0 and 2y - 3x + 5 = 0. Find the equation of the circle.1. (x - \(\frac{5}{3}\))2 + y2 = 92. (x - \(\frac{5}{3}\))2 + y2 = 813. (x + \(\frac{5}{3}\))2 + y2 = 814. (x + \(\frac{5}{3}\))2 + y2 = 9

Answer» Correct Answer - Option 2 : (x - \(\frac{5}{3}\))2 + y2 = 81

Concept:

Standard equation of a circle:

\(\rm (x-h)^2+(y-k)^2=R^2\)

Where centre is (h, k) and radius is R.

Note: The normal to the circle passes through the centre of the circle.

Distance between a point on a circle and the centre is the radius of the circle.

Distance between 2 points (x1, y1) and (x2, y2) is:

D = \(\rm \sqrt{(y_2-y_1)^2 + (x_2 -x_1)^2}\)

Area of the circle = πr2

 

Calculation:

Given normal to the circle are :

2y - 3x + 5 = 0 ...(i)

2y + 3x - 5 = 0  ...(ii)

Substracting (ii) from (i) 

-6x + 10 = 0

⇒ x = \(\boldsymbol{5\over3}\)

From equation (ii)

2y + 3(\({5\over3}\)) - 5 = 0

⇒ y = 0

∴ Coordinates of the centre are (\(\boldsymbol{5\over3}\), 0)

Given the area of circle = 81π 

πr2 = 81π 

⇒ r2 = 81

∴ The equation of circle is:

\(\rm (x-h)^2+(y-k)^2=R^2\)

⇒ (x - \({5\over3}\))2 + (y - 0)2 = 81

⇒ (x - \(\boldsymbol{5\over3}\))2 + y2 = 81

16.

The equation of a circle whose end points of one of its diameter are (2, -3) and (0, 1) is:1. x2 - 2x + y2 + 2y - 3 = 02. x2 + 2x + y2 - 2y - 3 = 03. x2 - 2x + y2 + 2y + 3 = 04. x2 - 2x + y2 + 2y - 5 = 0

Answer» Correct Answer - Option 1 : x2 - 2x + y2 + 2y - 3 = 0

Concept:

The equation of a circle with center at O(a, b) and radius r, is given by: (x - a)2 + (y - b)2 = r2.

 

Calculation:

The co-ordinates of the center of the circle are \(\rm O\left(\frac{2+0}{2},\frac{-3+1}{2}\right)\) = O(1, -1).

Radius of the circle = Distance between (0, 1) and (1, -1) = \(\rm \sqrt{(0-1)^2+(1+1)^2}\) = √5.

Equation of the circle = (x - 1)2 + (y +1)2 = (√5)2.

⇒ x2 - 2x + y2 + 2y - 3 = 0.

17.

Equation of the circle having diameter 8 and equation of diameters are  y + 2x - 5 = 0 and 2y + 3x - 8 = 01. x2 + y2 - 2x - 4y - 25 = 02. x2 + y2 - 4x - 2y - 11= 03. x2 + y2 + 4x + 2y - 25 = 04. x2 + y2 - 2x - 4y + 11 = 0

Answer» Correct Answer - Option 2 : x+ y2 - 4x - 2y - 11= 0

Concept:

Standard equation of a circle:

\(\rm (x-h)^2+(y-k)^2=R^2\)

Where centre is (h, k) and radius is R.

Note: The intersection of the diameters is the centre of the circle.

 

Calculation:

Given diameter = 8

⇒ Radius = 4

Also diameters equations:

y + 2x - 5 = 0                    ...(i)

2y + 3x - 8 = 0                  ...(ii)

Substracting 2 × (i) from (ii)

-x + 2 = 0

x = 2

Putting back in (i)

y + 2 × 2 - 5 = 0

y = 1

So center is (2, 1) and radius 4

The equation of circle:

\(\rm (x-2)^2+(y-1)^2=4^2\)

⇒ \(\rm x^2 + 4 - 4x+y^2 + 1 - 2y = 16\)

⇒ \(\boldsymbol{\rm x^2 +y^2- 4x - 2y-11 = 0}\)

18.

Let f(x, y) = 0 represents a circle, If f(0, a) has roots a = 2, 3 and f(a, 0) has roots \(a = 12, \frac 1 2,\) then the centre of the circle is:1. \(\left(\frac {-5}2, \frac 1 6\right)\)2. \(\left(\frac {4}{25}, \frac 2 5\right)\)3. \(\left(\frac {2}{7}, 6\right)\)4. \(\left(\frac {25}{4}, \frac 5 2\right)\)

Answer» Correct Answer - Option 4 : \(\left(\frac {25}{4}, \frac 5 2\right)\)

f(x, y) = 0 → circle

Let center of the circle is (-f, -g) and

f(x, y) = x2 + y2 + 2fx + 2gy + c = 0

Given:

f(0, a) = a2 + 2ag + c = 0

roots a = 2, 3

∴ 4 + 4g + c = 0     …1)

9 + 6g + c = 0     …2)

Solving 1) and 2) we get,

9 + 6g – 4g – 4 = 0

2g = -5

g = -2.5

Now,

f(a, 0) = a2 + 2fa + c = 0

roots a = 12, 0.5

∴ 144 + 24f + c = 0     …3)

0.25 + f + c = 0     …4)

Solving 3) and 4) we get,

-143.75 = 23f

f = -6.25

The center is \(\left( {\frac{{25}}{4},\;\frac{5}{2}} \right)\)