InterviewSolution
| 1. |
The length of the curve y = x3/2 over the interval [0,1] will be:1. \(\frac{1}{{27}}\left[ {{{\left( {13} \right)}^{3/2}} - 8} \right]\) units2. \(\frac{1}{{16}}\left[ {{{\left( {11} \right)}^{3/2}} - 3} \right]\) units3. \(\frac{57}{{5}}\) units4. \(\frac{1}{{9}}\left[ {{{\left( {15} \right)}^{1/2}} - 4} \right]\) units |
|
Answer» Correct Answer - Option 1 : \(\frac{1}{{27}}\left[ {{{\left( {13} \right)}^{3/2}} - 8} \right]\) units Concept: The length (L) of curve y(x) in interval (a,b) is given as: \(L = \mathop \smallint \limits_a^b \sqrt {\left[ {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} \right]dx } \) -----(1) Calculation: Given: y(x) = x3/2 (a, b) = (0, 1) \(\frac{{dy\left( x \right)}}{{dx}} = \frac{3}{2}\;{x^{\frac{1}{2}}}\) From equation (1) \(I = \mathop \smallint \limits_a^b \sqrt {\left[ {1 + \;\left( {\frac{9}{4}x} \right)} \right]} dx\) \( = \frac{1}{2}\mathop \smallint \limits_0^1 \sqrt {\left( {4 + 9x} \right).dx} \) Let, u = 4 + 9x \(\frac{{\partial u}}{{\partial x}} = 9 = \frac{1}{9}\smallint du = dx\) \(L = \left( {\frac{1}{2}} \right)\left( {\frac{1}{9}} \right)\mathop \smallint \limits_4^{13} \left( {\sqrt u } \right).du\) \(L = \;\left( {\frac{1}{2}} \right)\left( {\frac{1}{9}} \right)\left( {\frac{2}{3}} \right){\left[ {{4^{\frac{3}{2}}}} \right]_4}^{13}\) \(L = \frac{1}{{27}}[\left( {13{)^{\frac{3}{2}}} - {{\left( 4 \right)}^{\frac{3}{2}}}} \right]\) \(L = \frac{1}{{27}}\left( {{{\left( {13} \right)}^{\frac{3}{2}}} - 8} \right)\) |
|