1.

Find the difference between the simple interest and Compound Interest on a 15000 for 2 years at 5%per annum​

Answer»

Principal = Rs. 15,000Rate = 5% p.a.Time = 3 Years\sf{Difference = Compound \: Interest - Simple \: Interest}Difference=CompoundInterest−SimpleInterest\sf{Diff. = \BIGG[P \bigg(1 + \dfrac{r}{100} \bigg)^{t} - 1 \bigg]- \bigg[\dfrac{PRT}{100} } \bigg]Diff.=[P(1+ 100r ) t −1]−[ 100PRT ]\sf{Diff. = \bigg[15000 \bigg(1 + \CANCEL\dfrac{5}{100} \bigg)^{3} - 1 \bigg]- \bigg[\dfrac{150 \cancel{00} \times 5 \times 3} {\cancel{100}} } \bigg]Diff.=[15000(1+ 1005 ) 3 −1]−[ 100 150 00 ×5×3 ]\sf{Diff. = \bigg[15000 \bigg(1 + \dfrac{1}{20} \bigg)^{3} - 1 \bigg]- \bigg[150 \times 5 \times 3 } \bigg]Diff.=[15000(1+ 201 ) 3 −1]−[150×5×3]\sf{Diff. = \bigg[15000 \bigg( \dfrac{21}{20} \bigg)^{3} - 1 \bigg]- 2250}Diff.=[15000( 2021 ) 3 −1]−2250\sf{Diff. = \bigg[15000 \bigg( \dfrac{9261}{8000} - 1\bigg) \bigg]- 2250}Diff.=[15000( 80009261 −1)]−2250\sf{Diff. = \bigg(15000 \times \dfrac{1261}{8000} \bigg) - 2250}Diff.=(15000× 80001261 )−2250\sf{Diff. = Rs.(2364.375 - 2250)}Diff.=Rs.(2364.375−2250)\sf{Diff. = Rs. \: 114.375}Diff.=Rs.114.375⠀\therefore∴ Difference of CI and SI is Rs. 114.375



Discussion

No Comment Found

Related InterviewSolutions