1.

Find the domain and range of each of the following real valued functions : f(x) = √(x2-16)f(x) = \(\sqrt{x^2-16}\)

Answer»

f(x) = √(x2-16)

We know,

The square of a real number is never negative. 

Clearly, 

f(x) takes real values only when x2 – 16 ≥ 0 

⇒ x2 – 42 ≥ 0 

⇒ (x + 4)(x – 4) ≥ 0 

⇒ x ≤ –4 or x ≥ 4 

∴ x ∈ (–∞, –4] ∪ [4, ∞) 

Thus,

Domain of f = (–∞, –4] ∪ [4, ∞) 

When x ∈ (–∞, –4] ∪ [4, ∞), 

We have,

x2 – 16 ≥ 0

Hence,

\(\sqrt{x^2-16}\) ≥ 0

⇒ f(x) ≥ 0

∴ f(x) ∈ [0, ∞) 

Thus, 

Range of f = [0, ∞)



Discussion

No Comment Found