1.

Find the domain and range of each of the following real valued functions : f(x) = √(x-1)

Answer»

f(x) = √(x-1)

We know,

The square of a real number is never negative. 

Clearly, 

f(x) takes real values only 

When x – 1 ≥ 0

⇒ x ≥ 1 

∴ x ∈ [1, ∞) 

Thus, 

Domain of f = [1, ∞) 

When x ≥ 1, 

We have,

x – 1 ≥ 0 

Hence,

\(\sqrt{x-1}\) ≥ 0

⇒ f(x) ≥ 0

∴ f(x) ∈ [0, ∞) 

Thus,

Range of f = [0, ∞)



Discussion

No Comment Found