

InterviewSolution
Saved Bookmarks
1. |
Find the domain and range of the following (i) ` f(x)=sqrt(x^(2)-3x+2) " (ii) " f(x)=sqrt(x^(2)-4x+6)` |
Answer» (i) Clearly f(x) is defined if `x^(2)-3x+2 ge 0` `implies (x-1)(x-2) ge 0` `implies x in (-oo,1] cup [2,oo)` Now, `f(x)=sqrt(x^(2)-3x+2)` `=sqrt((x-(3)/(2))^(2)+2-(9)/(4))` `=sqrt((x-(3)/(2))^(2)-(1)/(4))` Clearly, `(x-(3)/(2))^(2)-(1)/(4) ge 0` ` :. sqrt((x-(3)/(2))^(2)-(1)/(4)) ge 0` Therefore, range is `[0,oo).` Here least value of f(x) occurs when `x-(3)/(2)= +-(1)/(2), ` i.e., (ii) `f(x) =sqrt(x^(2)-4x+6)` `=sqrt((x-2)^(2)+2)` Clearly `(x-2)^(2) +2 ge 2, AA x in R.` So, domain of f(x) is R. Also, `sqrt((x-2)^(2)+2) ge sqrt(2)` Hence, range is `[ sqrt(2),oo).` |
|