

InterviewSolution
Saved Bookmarks
1. |
Find the domain and range of the function `f(x) = sin^(-1)((1+e^(x))^(-1))`. |
Answer» `f(x) = sin^(-1)((1+e^(x))^(-1))` We know that `e^(x) gt 0` for all real x. ` :. e^(x) +1 gt 1` `implies 0 lt (1)/(1+e^(x)) lt 1` So, f(x) is defined for all real values of x. Hence domain is R. Also `0 lt (1)/(1+e^(x)) lt 1` `implies sin^(-1)0 lt "sin"^(-1)(1)/(1+e^(x)) lt sin^(-1)1` `implies 0 lt "sin"^(-1)(1)/(1+e^(x)) lt (pi)/(2)` Therefore, range of the function is `(0, (pi)/(2))` |
|