

InterviewSolution
Saved Bookmarks
1. |
Find the domain and range of the function `f(x)="sin"^(-1)(x^(2))/(2)` |
Answer» `f(x)="sin"^(-1)(x^(2))/(2)` We must have `o le (x^(2))/(2) le 1` `implies 0le x^(2) le 2` `implies -sqrt(2) le x le sqrt(2)` So, domain is `[ -sqrt(2),sqrt(2)]` Now, ` 0 le (x^(2))/(2) le 1` `implies sin^(-1) 0 le "sin"^(-1)(x^(2))/(2) le sin^(-1)1` `implies 0 le "sin"^(-1)(x^(2))/(2) le pi//2` Hence range is `[0,pi//2]`. |
|