1.

Find the domain and range of the range of each of the following real functions: `f(x)=(1)/(sqrt(x^(2)-1))`

Answer» Correct Answer - dom `(f)=(-oo,-1)uu(1,oo)," range "(f)=R-{0}`
`f(x)=(1)/(sqrt(x^(2)-1))` is defined only when `x^(2)-1gt0`.
Now, `x^(2)-xgt0implies(x+1)(x-1)gt0implies(xlt-1)or(xgt1)`
`impliesx""in(-oo,-1)orx""in(1,oo)`.
`:."dom "(f)=(-oo,-1)uu(1,oo)`.
Let y=f(x). Then,
`y=(1)/(sqrt(x^(2)-1))impliesy^(2)=(1)/((x^(2)-1))impliesx^(2)-1=(1)/(y^(2))impliesx=sqrt((1)/(y^(2))+1)=sqrt((1+y^(2))/(y^(2)))`
Clearly, x is not defined when y=0.
`:."range "(f)=R-{0}`.


Discussion

No Comment Found