1.

Find the domain and the range of the function, `f(x)=(x^(2)-25)/(x-5)`.

Answer» We have, `f(x)=(x^(2)-25)/(x-5)`
Clearly, f(x) is defined for all real values of x for which `x-5ne0,i.e.,xne5`.
`:."dom "(f)=R-{5}`.
Let y=f(x). Then,
`y=(x^(2)-25)/(x-5)impliesy=x+5,"when "x-5ne0`
`impliesy=x+5,"when "xne5`
`impliesyne5+5impliesyne10`.
Then, y can be assigned any real value except 10.
`:."range "(f)=R-{10}`.
Hence, dom `(f)=R-{5}"and range "(f)=R-{10}`.


Discussion

No Comment Found