InterviewSolution
Saved Bookmarks
| 1. |
Find the domain and the range of the real function, `f(x)=(1)/(sqrt(x+|x|))`. |
|
Answer» We have, `f(x)=(1)/(sqrt(x+|x|))` Now, `|x|={{:(x",when "xge0),(-x",when "xlt0):}` `impliesx+|x|={{:(x+x",when "xge0),(x-x",when "xlt0):}` `impliesx+|x|={{:(2x",when "xge0),(0",when "xlt0):}` `impliesx+|x|gt0,"when "xgt0` `impliesf(x)=(1)/(sqrt(x+|x|))` assumes real values only when `x+|x|gt0` and this happens only when `xgt0`. `:."dom "(f)=(0,oo)`. |
|