1.

Find the elastic potential energy stored in each spring shown in figure, when the block is in equilibrium. Also find the time period of vertical oscillation of the block.

Answer» Correct Answer - `=2pi sqrt(M(1/k_1+1/k_2+1/k_3))`
`PE_1=(m^2g^2)/(2k_1)`
`PE_2=(m^2g^2)/(2k_2)`
`PE_3=(m^2g^2)/(2k_3)`
`k_1, k_2, k_3` are in series
`=1/k=1/k_1+1/k_2+1/k_3`
`rarr K=(k_1k_2k_3)/(k_1k_2+k_2k_3+k_3k_1)`
time period
`T=2pisqrt(m/k)`
`=2pi sqrt(M(1/k_1+1/k_2+1/k_3))`
Now force =weight =mg
:. At `k_1` spring
`x_1=(mg)/k_1`
similarly `x_2=(mg)/k_2`
and `x_3=(mg)/k_3`
`:. PE_1=1/2k_1x_1^2`
`=1/2k_1((Mg)/K_1)^2`
`=1/2k_1(m^2g^2)/k_1^2`
`=1/2 (m^2g^2)/k_1=(m^2g^2)/(2k_1)`
similarly `PE_2=(m^2g^2)/(2k_2)`
and `PE_3=(m^2g^2)/(2k_3)`


Discussion

No Comment Found

Related InterviewSolutions