InterviewSolution
Saved Bookmarks
| 1. |
Find the elastic potential energy stored in each spring shown in figure, when the block is in equilibrium. Also find the time period of vertical oscillation of the block. |
|
Answer» Correct Answer - `=2pi sqrt(M(1/k_1+1/k_2+1/k_3))` `PE_1=(m^2g^2)/(2k_1)` `PE_2=(m^2g^2)/(2k_2)` `PE_3=(m^2g^2)/(2k_3)` `k_1, k_2, k_3` are in series `=1/k=1/k_1+1/k_2+1/k_3` `rarr K=(k_1k_2k_3)/(k_1k_2+k_2k_3+k_3k_1)` time period `T=2pisqrt(m/k)` `=2pi sqrt(M(1/k_1+1/k_2+1/k_3))` Now force =weight =mg :. At `k_1` spring `x_1=(mg)/k_1` similarly `x_2=(mg)/k_2` and `x_3=(mg)/k_3` `:. PE_1=1/2k_1x_1^2` `=1/2k_1((Mg)/K_1)^2` `=1/2k_1(m^2g^2)/k_1^2` `=1/2 (m^2g^2)/k_1=(m^2g^2)/(2k_1)` similarly `PE_2=(m^2g^2)/(2k_2)` and `PE_3=(m^2g^2)/(2k_3)` |
|