1.

Find the enrgy of the reaction N^(14)(alpha,p)O^(17) if the kinetic enrgy of the incoming alpha-pariticle is T_(alpha)=40MeV and the proton outgoing at an angle theta=60^(@) to the motion direction of the alpha-particle has a kinetic energy T_(P)= 2.09 MeV.

Answer»

Solution :The reaction is `N^(14)(alpha,p)O^(17)`
It is given that (in the Lab frmae where `N^(14)` is at rest)`T_(alpha)=4.0MeV`
The momentum of incident `alpha` particle is
`sqrt(2m_(alpha)T_(alpha))hat(i)=sqrt(2eta_(alpha)m_(0)T_(alpha))hat(i)`
The momentum of OUTGOING proton is
`sqrt(2m_(p)T_(p)) (COS theta hat(i)+ sin theta hat(j))`
`=sqrt(2eta_(p)m_(0))(cos theta hat(i)+sin theta hat(j))`
where `eta_(p)=(m_(p))/(m_(0)), eta_(alpha)=(m_(alpha))/(m_(0))` ,
and `m_(0)` is the mass of `O^(17)`.
Teh momentum of `O^(17)` is
`(sqrt(2 eta_(alpha)m_(0)T_(alpha))-sqrt(2eta_(p)m_(0)T_(p)cos theta))hat(i)`
`-sqrt(2m_(0)eta_(p)T_(p))sin theta hat(j)`

By energy conservation( conservation of enrgy incliding rest mass energy and kinetic energy)
`M_(14)c^(2)+M_(alpha)c^(2)+T_(alpha)`
`=M_(p)c^(2)+T_(p)+M_(17)c^(2)`
`+[(sqrt(eta_(alphaT_(alpha)))-sqrt(eta_(p)T_(p)) cos theta)^(2)+eta_(p)T_(p)sin^(2) theta+eta_(p)T_(p) sin^(2) theta]`
Hence by defination of the `Q` of reaction
`Q=M_(14)c^(2)+M_(alpha)c^(2)-M_(p)c^(2)-M_(17)c^(2)`
`=T_(p)+eta_(alpha)T_(alpha)+eta_(p)T_(p)-2sqrt(eta_(p)eta_(a)T_(alpha)T_(p))xx cos theta-T_(alpha)`
`=(1+eta_(p))T_(p)+T_(alpha)(1-eta_(alpha))`
`-2sqrt(eta_(p)eta_(alpha)T_(alpha)T_(p))cos theta= -1.19MeV`


Discussion

No Comment Found

Related InterviewSolutions