| 1. |
Find the equation of circle concentric with circle 2x^2+2y^2+4x_2y+1=0 |
|
Answer» -step EXPLANATION:Center of the given circle x 2 +y 2 −3x+4y+ 2 1 =0 is ( 2 3 ,−2) AREA of the given cirle =πr 1 2 Area of circle to be found =2πr 1 2 ⇒r 2 = 2 r 1 g 2 =g 1 = 2 −3 f 2 =f 1 =2 r 1 = g 1 2 +f 1 2 −c = 4 9 +4− 2 1 4 9+16−2 = 4 23 r 2 = 2 23 and r 2 = g 2 2 +f 2 2 −c 2 = 4 9 +4−c 2 = 2 23 ⇒ 4 25 −c 2 = 2 23 ⇒c 2 = 4 25 − 2 23 = 4 −21 ∴ Equation of REQUIRED circle: x 2 +y 2 −3x+4y− 4 21 =0 ⇒4x 2 +4y 2 −12x+16y−21=0 |
|