

InterviewSolution
Saved Bookmarks
1. |
Find the equation of the bisector of the obtuse angle between the lines`3x-4y+7=0`and `12 x+5y-2=0.` |
Answer» Correct Answer - 21x+77y-101=0 Firstly, make the constant terms `(c_(1), c_(2))` positive. 3x-4y+7 = 0 and -12x-5y+2=0 `therefore a_(1)a_(2) + b_(1)b_(2) = (3)(-12) + (-4)(-5)` =-36+20=-16 Hence, "-" sign gives the obtuse bisector. Therefore, the obtuse bisector is `((3x-4y+7))/(sqrt((3)^(2) + (-4)^(2))) = ((-12x-5y+2))/(sqrt((-12)^(2) + (-5)^(2)))` or 13(3x-4y+7) = -5(-12x-5y+2) or 21x+77y-101 =0 |
|