1.

Find the equation of the plane passing through the three points (2,2,0), (1,2,1), (-1,2,-2).(a) \((\vec{r}-(2\hat{i}+2\hat{j})).[(-\hat{i}+\hat{k})×(-3\hat{i}-2\hat{k})]\)=0(b) \((\vec{r}-(3\hat{i}-2\hat{k})).[(-\hat{i}+\hat{k})×(2\hat{i}-2\hat{j})]\)=0(c) \((\vec{r}+(2\hat{i}+2\hat{j})).[(-\hat{i}-\hat{k})×(-3\hat{i}-2\hat{k})]\)=0(d) \((\vec{r}-(2\hat{i}+2\hat{j})).[(-\hat{i}-\hat{k})×(3\hat{i}+2\hat{k})]\)=0I have been asked this question during an interview.Origin of the question is Three Dimensional Geometry in portion Three Dimensional Geometry of Mathematics – Class 12

Answer»

Correct option is (a) \((\vec{r}-(2\HAT{i}+2\hat{j})).[(-\hat{i}+\hat{k})×(-3\hat{i}-2\hat{k})]\)=0

For explanation I would say: Let \(\vec{a}=2\hat{i}+2\hat{j}, \,\vec{b}=\hat{i}+2\hat{j}+\hat{k}, \,\vec{c}=-\hat{i}+2\hat{j}-2\hat{k}\)

The VECTOR equation of the plane passing through three points is GIVEN by

\((\vec{r}-\vec{a}).[(\vec{b}-\vec{a})×(\vec{c}-\vec{a})]\)=0

\((\vec{r}-(2\hat{i}+2\hat{j})).[((\hat{i}+2\hat{j}+\hat{k})-(2\hat{i}+2\hat{j}))×((-\hat{i}+2\hat{j}-2\hat{k})–(2\hat{i}+2\hat{j}))]\)=0

\((\vec{r}-(2\hat{i}+2\hat{j})).[(-\hat{i}+\hat{k})×(-3\hat{i}-2\hat{k})]\)=0.



Discussion

No Comment Found

Related InterviewSolutions