1.

Find the equation of the straight line passing through the point (-2, 1) and perpendicular to the line 3x+5y+2=0.

Answer»

EXPLANATION.

Equation of STRAIGHT lines.

Passing through POINT = (-2,1).

Perpendicular to the line : 3X + 5y + 2 = 0.

As we know that,

SLOPE of the perpendicular line = b/a.

Slope of the line : 3x + 5y + 2 = 0  is 5/3.

⇒ Slope = m = 5/3.

Equation of straight line.

⇒ (y - y₁) = m(x - x₁).

Put the values in the equation, we get.

⇒ (y - 1) = 5/3(x - (-2)).

⇒ (y - 1) = 5/3(x + 2).

⇒ 3(y - 1) = 5(x + 2).

⇒ 3y - 3 = 5X + 10.

⇒ 5x + 10 - 3y + 3 = 0.

⇒ 5x - 3y + 13 = 0.

                                                                                                                     

MORE INFORMATION.

Slope of line.

(1) = m = tanθ, where θ is the acute angle made by a line with the positive direction of x axis in anticlockwise.

(2) = The slope of a line joining two points (x₁, y₁) and (x₂, y₂) is given by,

m = (y₂ - y₁)/(x₂ - x₁).



Discussion

No Comment Found

Related InterviewSolutions