| 1. |
Find the equations of tangent and normal to the given curve at the indicated point:x^2/a^2 +y^2/b^2 =1 at (acos theta,bsin theta). |
Answer» EXPLANATION.Equation of tangent and equation of NORMAL to the giving curve to the. ⇒ x²/a² + y²/b² = 1. at (a cosθ, B sinθ). As we know that, ⇒ x²/a² + y²/b² = 1. Differentiate w.r.t x, we get. ⇒ 2x/a² + 2y/b². (dy/dx) = 0. ⇒ 2y/b². (dy/dx) = - 2x/a². ⇒ dy/dx = (-2x/a²)/(2y/b²). ⇒ dy/dx = (-2x/a²) x (b²/2y). ⇒ dy/dx = -xb²/ya². PUT the value of (a cosθ, b sinθ) in the equation, we get. ⇒ dy/dx = -(a cosθ) x b²/(b sinθ) x a². ⇒ dy/dx = (- bcosθ)/(a sinθ). As we know that, FORMULA of equation of tangent. ⇒ (y - y₁) = m(x - x₁). Put the value in the equation, we get. ⇒ (y - b sinθ) = (- bcosθ)/(a sinθ) (x - a cosθ). ⇒ (a sinθ)(y - b sinθ) = (- bcosθ)(x - a cosθ). ⇒ (a sinθ)y - absin²θ = (- bcosθ)x + abcos²θ. ⇒ ay sinθ + bx cosθ = abcos²θ + absin²θ. ⇒ ay sinθ + bx cosθ = ab. ⇒ bx cosθ + ay sinθ = ab. ⇒ (bx cosθ)/ab + (ay sinθ)/ab = 1. ⇒ x/a cosθ + y/b sinθ = 1. As we know that, Formula of equation of normal. ⇒ (y - y₁) = -1/m(x - x₁). ⇒ (y - b sinθ) = (a sinθ)/(b cosθ) (x - a cosθ). ⇒ (b cosθ)(y - b sinθ) = (a sinθ)(x - a cosθ). ⇒ by cosθ - b²sinθ.cosθ = AX sinθ - a²sinθ.cosθ. ⇒ ax sinθ - by cosθ = (a² - b²) sinθ.cosθ. ⇒ (ax sinθ)/(sinθ.cosθ) - (by cosθ)/(sinθ.cosθ) = (a² - b²). ⇒ (ax)/cosθ - (by)/sinθ) = (a² - b²). ⇒ ax secθ - by cosecθ = (a² - b²). |
|