

InterviewSolution
Saved Bookmarks
1. |
Find the equations of the lines, which cut-off intercepts on the axeswhose sum and product are `1`and `-6`, respectively. |
Answer» Let the required equation be `(x)/(a)+(y)/(b)=1`. Then x-intercept=a and y-intercept-b `therefore a+b…..(i)` and ab=-……..(ii) Putting `b=(-6)/(a)` from (ii) in (i), we get `a-(6)/(a)=1 Leftrightarrow a^(2)-a-6=0 Leftrightarrow (a-3)(a+2)=0` `Leftrightarrow a=3 or a=-2` `"Now", a=3 Leftrightarrow b=(1-a)=(1-3)=-2` `"And", a=-2 Leftrightarrow b=(1-a)=(1+2)=3` `therefore` the required equation is `(x)/(3)+(y)/(-2)=1 or (x)/(-2)+(y)/(3)=1` `i.e. 2x-3y-6=0 or 3x-2y+6=0` |
|