1.

Find the equations of the tangents to the curve x² + y2 – 2x – 4y + 1 = 0, which areparallel to the X-axis.ution:​

Answer»

x2+y2−2x−4y+1⇒2x+2ydxdy​−2−4dxdy​=0⇒x+ydxdy​−1−2dxdy​=0 ⇒ (y−2)dxdy​=(1−x)dxdy​=(1−x)(y−2)​for the tangents to be PARALLEL to y− AXIS, dxdy​=0∴dxdy​=(1−x)(y−2)​=0 ⇒y=2When y=2x2+22−2x−4(2)+1=0 ⇒x2+4−2x−8+1=0⇒x2−2x−3=0 ⇒(x−1)(x−3)=0 ⇒x=−1 or 3So, the points where tangents are parallel to y− axis =(−1,2),(3,2)Step-by-step EXPLANATION:



Discussion

No Comment Found

Related InterviewSolutions