

InterviewSolution
Saved Bookmarks
1. |
Find the following sums : (i) `sumsum_(inej) ""^(n)C_(i).""^(n)C_(j)` , (ii) `sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j)`. (iii) `sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j)`. |
Answer» (i) `underset(i ne j)(sumsum).^(n)C_(i)..^(n)C_(j)=(underset(i=0)overset(n)sumunderset(j=0)overset(n)sum.^(n)C_(i).^(n)C_(j))-underset(i=0)overset(n)sum(.^(n)C_(i))^(2)` `= (underset(i=0)overset(n)sum.^(n)C_(i))(underset(j=0)overset(n)sum.^(n)C_(j))-underset(i=0)overset(n)sum(.^(n)C_(i))^(2)` `= (2^(n))(2^(n))-.^(2n)C_(n) = 4^(n)-.^(2n)C_(n)` (ii) `underset(0leiltjlen)(sumsum).^(n)C_(i)..^(n)C_(j)= ((underset(i=0)(sum)underset(j=0)(sum).^(n)C_(i).^(n)C_(j))-underset(i=0)(sum)(.^(n)C_(i))^(2))/(2)` `= (2^(2n)-.^(2n)C_(n))/(2)` (ii) `underset(0leiltjlen)(sumsum).^(n)C_(i)..^(n)C_(j)= ((underset(i=0)(sum)underset(j=0)(sum).^(n)C_(i).^(n)C_(j))+underset(i=0)overset(n)sum(.^(n)C_(i))^(2))/(2)` `= (2^(2n) + .^(2n)C_(n))/(2)` |
|