 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Find the general solution of each of the following differential equations: `3e^(x)tany dx +(1-e^(x))sec^(2)y dy=0` | 
| Answer» Correct Answer - `tany = C (1-e^(-x))^(3)` `int (3e^(x))/((1-e^(x)))dx+int(sec^(2)y)/(tany)dy=log|C_(1)|` `rArr -3int (-e^(x))/((1-e^(x)))dx+int (sec^(2)y)/(tany)dy =log|C_(1)|rArr -3log|1-e^(-x)|+log|tan y|=log|C_(1)|` `rArr log|(1-e^(-x))^(-3)tany|=log|C_(1)|rArr (tan y)/((1-e^(-x))^(3)) = pm C_(1)=C.` | |