InterviewSolution
Saved Bookmarks
| 1. |
Find the general solution of each of the following differential equations: `(1-x^(2))(1-y)dx = xy(1+y)dy` |
|
Answer» Correct Answer - `log|x(1-y^(2))|=(x^(2))/(2)-(y^(2))/(2)-2y+C` `int ((1-x^(2)))/(x)dx = int(y(1+y))/((1-y))dy rArr int ((1)/(x)-x)dx=int((y^(2)+y))/((-y+1))dy` `therefore int ((1)/(x)-x)dx=int(-y-2+(2)/(1-y))dy " "["on dividing "(y^(2)+y)"by"(-y+1)].` |
|