

InterviewSolution
Saved Bookmarks
1. |
Find the general solution of `(x+2y^(3))(dy)/(dx)=y` |
Answer» Given that, `(x+2y^(3))(dy)/(dx)=y` `y(dy)/(dx)=x+2y^(3)` `Rightarrow (dy)/(dx)=(x)/(y)+2y^(2)["dividing throughout by y"]` Which linear different equation. On comparing it with `(dx)/(dy)+Px=0` , we get `P=-(1)/(y),Q=2y^(2)` `IF=e^(int-(1)/(y)dy)=e^(-1(1)/(y)dy)` `=e^(-logy)=(1)/(y)` The genergal solution is `x.(1)/(y)=int2y^(2).(1)/(y)dy+C` `Rightarrow (x)/(y)=(2y^(2))/(2)+C` `Rightarrow (x)/(y)=y^(2)+C` `Rightarrow x=y^(3)+Cy` |
|