InterviewSolution
Saved Bookmarks
| 1. |
Find the general solutions of equation `sin^(4)x + cos^(4)x=sinx cosx` |
|
Answer» Using half-angle formulae, we can represent given equation in the form: `rArr ((1-cos2x)/2)^(2)+((1+cos2x)/2)^(2) = sinx cosx` `rArr (1-cos2x)^(2) + (1+cos2x)^(2)=4sinx cosx` `rArr sin^(2)2x +sin2x = 2` `rArr sin2x = 1` or `sin2x =-2` (which is not possible) `2x=2npi+pi/2, n in I` `rArr x=npi + pi/4, n in I` |
|