1.

Find the gratest possible angle through which a deutron is scattered as a result of elastic collision with an initially stationary proton.

Answer»

Solution :From CONSERVATION of momentum
`sqrt(2MT)hat(i)=vec(p)_(d)+vec(P)_(p)`
or `P_(p)^(2)= 2MT+p_(d)^(2)-2sqrt(2MT)p_(d) COS THETA`
From energy conservation
`T=(p_(d)^(2))/(2M)+(p_(p)^(2))/(2m)`

`(M=` MASS of denteron, `m=` mass of proton)
So `P_(p)^(2)= 2mT-(m)/(M)p_(d)^(2)`
Hence `p_(d)^(2)(1+(m)/(M))-2 sqrt(2MT) p_(d) cos theta+2(M-m)T=0`
For real roots `4(2MT) cos^(2) theta-4xx2(M-m)T(1+(m)/(M)) ge0`
`cos^(2) theta ge(1-(m^(2))/(M^(2)))`
Hence `sin^(2)theta le(m^(2))/(M^(2))`
i.e., `theta le"sin"^(-1)(m)/(M)`
For deuteron-proton scalterting `theta_(max)= 30^(@)`.


Discussion

No Comment Found

Related InterviewSolutions