

InterviewSolution
Saved Bookmarks
1. |
Find the greatest and least values of the function `f(x)=(sin^(-1)x)^3+(cos^(-1)x)^3,-1 le x le 1` |
Answer» Using `sin^(-1)x+cos^(-1)x=pi/2` we can write the function in terms of `sin^(-1)x(or cos^(-1)x)` alone. And then note that range of `sin^(-1)x " is "[-pi/2,pi/2] and cos^(-1)x " is "[0,pi]`. Put `cos^(-1)x=t, ` so that `sin^(-1)x=pi/2-t, and 0, let le pi` Now the trigonometry ends and algebra takes over. Finding the greatest and least values of the function f(x) amounts to finding the greatest and least values of function g(t). where `g(t)=(pi/2-t)^3+t^3,0 le t le pi` `=(pi/2-t+t^3)-3(pi/2-t)(t)(pi/2-t+t)` `=(pi/2)^3-3t(pi/2-t)pi/2` `pi^3/8-3pi^3/4t+(3pi)/2t^2` `(3pi)/2[t^2-pi/2t+pi^2/12]` `=(3pi)/2[(t0pi/4)^2+pi^2/12-pi^2/16]` `=(3pi)/2[(t-pi/2)^2+pi^2/48]` `g(pi/4)=(3pi)/2.pi^2/48=pi^3/32` `g(0)=pi^3/8` `g(pi)=(3pi)/2[((3pi)/4)^2+pi^2/48]` `=(3pi)/2[(9pi^2)/16+pi^2/48]` `=(3pi)/2.(28pi^2)/48` `=7/8pi^3` So the least value is `pi^3/32`, attained at `t=pi/4`, i.e., `x=1/sqrt2` and the greatest value is `(7pi^3)/8`, attained at `t=pi,i.e., x= -1` |
|