1.

`tan^(-1)[(cosx)/(1+sinx)]`is equal to`pi/4-x/2,forx in (-pi/2,(3pi)/2)``pi/4-x/2,forx in (-pi/2,pi/2)``pi/4-x/2,forx in (-pi/2,pi/2)``pi/4-x/2,forx in (-(3pi)/2,pi/2)`

Answer» `tan^-1((cosx)/(1+sinx))`
`=tan^-1((sin(pi/2-x))/(1+cos(pi/2-x)))`
`=tan^-1((2sin(pi/4-x/2)cos(pi/4-x/2))/(2cos^2(pi/4-x/2)))`
`=tan^-1(tan(pi/4-x/2)`
`=pi/4-x/2`
Now, we know, range of `tan^-1x` is from `-pi/2` to `pi/2`.
`:. -pi/2 lt pi/4-x/2 lt pi/2`
`=> -(3pi)/4 lt -x/2 lt pi/4`
`=> -pi/2 lt x lt (3pi)/2`
So, option `a` is the correct option.


Discussion

No Comment Found