1.

Find the HCF of the pair of integers and express it as a linear combination of them 592 and 252.

Answer»

By applying Euclid’s division lemma on 592 and 252, we get 

592 = 252 x 2 + 88……… (1) 

As the remainder ≠ 0, apply division lemma on divisor 252 and remainder 88 

252 = 88 x 2 + 76………. (2) 

As the remainder ≠ 0, apply division lemma on divisor 88 and remainder 76 

88 = 76 x 1 + 12………… (3) 

As the remainder ≠ 0, apply division lemma on divisor 76 and remainder 12 

76 = 12 x 6 + 4………….. (4) 

Since the remainder ≠ 0, apply division lemma on divisor 12 and remainder 4 

12 = 4 x 3 + 0……………. (5) 

Thus, we can conclude the H.C.F. = 4. 

Now, in order to express the found HCF as a linear combination of 592 and 252, we perform 

4 = 76 – 12 x 6 [from (4)] 

= 76 – [88 – 76 x 1] x 6 [from (3)] 

= 76 – 88 x 6 + 76 x 6 

= 76 x 7 – 88 x 6 

= [252 – 88 x 2] x 7 – 88 x 6 [from (2)] 

= 252 x 7- 88 x 14 - 88 x 6 

= 252 x 7- 88 x 20 

= 252 x 7 – [592 – 252 x 2] x 20 [from (1)]

= 252 x 7 – 592 x 20 + 252 x 40 

= 252 x 47 – 592 x 20 

= 252 x 47 + 592 x (-20)



Discussion

No Comment Found