

InterviewSolution
1. |
Find the inverse of the following matrices by the adjoint method :\( \begin{bmatrix}2&-2 \\[0.3em]4 & 3 \\[0.3em] \end{bmatrix} \)[2,-2,4,3] |
Answer» Let A = [2,-2,4,3] \( \begin{bmatrix}2&-2 \\[0.3em]4 & 3 \\[0.3em] \end{bmatrix} \) |A| = = 6 + 8 = 14 ≠ 0 ∴ A-1 exist First we have to find the co-factor matrix = [Aij]2x2 where Aij = (-1)i+jMij Now, A11 = (-1)1+1 M11 = 3 A12 = (-1)1+2M = -4 A21 = (-2)2+1M21 = (-2) = 2 A22 = (-1)2+2M22 = 2 Hence the co-factor matrix = \( \begin{bmatrix}A_{11}&A_{12} \\[0.3em]A_{21} & A_{22} \\[0.3em] \end{bmatrix} \) = \( \begin{bmatrix}3&-4 \\[0.3em]2 & 2 \\[0.3em] \end{bmatrix} \) ∴ adj A = \( \begin{bmatrix}3&2 \\[0.3em]-4& 2 \\[0.3em] \end{bmatrix} \) ∴ A-1 = \(\frac{1}{|A|}\) (adj A) = \(\frac{1}{14}\)\( \begin{pmatrix}3&2 \\[0.3em]-4& 2 \\[0.3em] \end{pmatrix} \) |
|