

InterviewSolution
Saved Bookmarks
1. |
Find the inverse of the function `f:[-(pi)/(2)-"tan"^(_1)(3)/(2),(pi)/(2)-"tan"^(-1)(3)/(4)] to [-1,1],` `f(x)=3cosx+4sinx +7.` |
Answer» We have, `f(x)= y=3cosx +4sinx+7` `implies y=sqrt(3^(2)+4^(2))[(3)/(sqrt(3^(2)+4^(2)))cosx+(4)/(sqrt(3^(2)+4^(2)))sinx]+7` `=5[(3)/(5)cosx+(4)/(5)sinx]+7` `=5[sin theta cos x+cos theta sinx]+7," where " tan theta=(3)/(4)` `=5 sin(x+theta)+7` `implies y-7=5sin(x+theta)` `implies (y-7)/(5)=sin(x+theta)` `implies "sin"^(-1)(y-7)/(5)=x+theta` `implies x="sin"^(-1)(y-7)/(5)-theta` `f^(-1)(x)="sin"^(-1)(x-7)/(5)-"tan"^(-1)(3)/(4)` |
|