1.

Find the inverse of the function f(x) = 5x – 8, where x ∈ R.

Answer»

Given:

f (x) = 5x – 8, x ∈ R.

For a function to be invertible, it should be a bijection, i.e., one-one onto function

For all x1, x2 ∈ R, f (x1) = f (x2) ⇒ 5x1 – 8 = 5x2 – 8 ⇒ x1 = x2 ⇒ f (x) is one-one. 

Let y = f (x) = 5x – 8 ⇒ 5x = y + 8 ⇒ x = \(\frac{y+8}{5}\)  

Thus, for all y ∈ R,  x = \(\frac{y+8}{5}\)  ∈ R 

⇒ f (x) is onto. 

f being one-one onto ⇒ f is invertible.

Let y = f (x) = 5x – 8 

⇒ x = \(\frac{y+8}{5}\) 

⇒ f –1(y) = \(\frac{y+8}{5}\)  

⇒ f –1(x) = \(\frac{x+8}{5}\)



Discussion

No Comment Found