InterviewSolution
Saved Bookmarks
| 1. |
Find the isothermal compressibility `x` of a Van der Walls gas as a function of volume `V` at temperature `T` By definition, `x = - (1)/(V) (del V)/(del p)`. |
|
Answer» `p =(R T)/(V - b) =(a)/(V^2) - V((del p)/(del V))_T = (R TV)/((V - b)^2)-(2a)/(V^2)` or, `K=(-1)/(V)((del V)/(del p))_T` =`[(RTV^3 - 2a(V - b)^2)/(V^2(V - b)^2)]^-1 = (V^2(V - b))/[[RTV^3 - 2a(V -b)^2]`. |
|