1.

Find the least number that must be added to 9598 to make it a perfect square​

Answer»

THIS IS YOUR ANSWER.Step-by-step explanation:Answer 1. LEAST number that must be ADDED to 9598 to make it a perfect square.                97.96           ____________     9    |   9598.0000     9    |   81           |______    187 |   1498        7 |   1309             |_______ 1949  |    18900         9  |    17541           |__________ 19586 |      135900            6 |      117516           |__________           |        18384 Therefore, √9598 = 97.96 And, the nearest perfect square is 98². ⇒ 98² = 9604 ⇒ 9604 - 9598 = 6 So, 6 is the least number which must be added to 9598 to make it a perfect square. ⇒ 9598 + 6 = 9604 And, √9604 = 98 _____________________________________________________________ Answer 2. Least number which must be SUBTRACTED from 2361 to make it a perfect square.              48           __________     4   |  2361     4   |  16            |______   88   |    761     8   |    704                  |_______   96   |      57            | So, on finding the square root of 2361, we get the quotient as 48 and the remainder as 57. HENCE, we will subtract 57 from 2361 to get the number which is a perfect square.   ⇒ 2361 - 57 = 2304 ⇒ √2304 = 48 Therefore, 57 is the least number which must be subtracted from 2361 to make it a perfect square. _____________________________________________________________ Answer 3 For the answer of the 3rd question, please have a look at the attachment. Square root of 683.95 up to 2 decimal places. ⇒ √683.95 = 26.15 Thank you very much. Answer 1. Least number that must be added to 9598 to make it a perfect square.                97.96           ____________     9    |   9598.0000     9    |   81           |______    187 |   1498        7 |   1309             |_______ 1949  |    18900         9  |    17541           |__________ 19586 |      135900            6 |      117516           |__________           |        18384 Therefore, √9598 = 97.96 And, the nearest perfect square is 98². ⇒ 98² = 9604 ⇒ 9604 - 9598 = 6 So, 6 is the least number which must be added to 9598 to make it a perfect square. ⇒ 9598 + 6 = 9604 And, √9604 = 98 _____________________________________________________________ Answer 2. Least number which must be subtracted from 2361 to make it a perfect square.              48           __________     4   |  2361     4   |  16            |______   88   |    761     8   |    704                  |_______   96   |      57            | So, on finding the square root of 2361, we get the quotient as 48 and the remainder as 57. Hence, we will subtract 57 from 2361 to get the number which is a perfect square.   ⇒ 2361 - 57 = 2304 ⇒ √2304 = 48 Therefore, 57 is the least number which must be subtracted from 2361 to make it a perfect square. _____________________________________________________________ Answer 3 For the answer of the 3rd question, please have a look at the attachment. Square root of 683.95 up to 2 decimal places. ⇒ √683.95 = 26.15 Thank you very much. Answer 1. Least number that must be added to 9598 to make it a perfect square.                97.96           ____________     9    |   9598.0000     9    |   81           |______    187 |   1498        7 |   1309             |_______ 1949  |    18900         9  |    17541           |__________ 19586 |      135900            6 |      117516           |__________           |        18384 Therefore, √9598 = 97.96 And, the nearest perfect square is 98². ⇒ 98² = 9604 ⇒ 9604 - 9598 = 6 So, 6 is the least number which must be added to 9598 to make it a perfect square. ⇒ 9598 + 6 = 9604 And, √9604 = 98 _____________________________________________________________ Answer 2. Least number which must be subtracted from 2361 to make it a perfect square.              48           __________     4   |  2361     4   |  16            |______   88   |    761     8   |    704                  |_______   96   |      57            | So, on finding the square root of 2361, we get the quotient as 48 and the remainder as 57. Hence, we will subtract 57 from 2361 to get the number which is a perfect square.   ⇒ 2361 - 57 = 2304 ⇒ √2304 = 48 Therefore, 57 is the least number which must be subtracted from 2361 to make it a perfect square. _____________________________________________________________ Answer 3 For the answer of the 3rd question, please have a look at the attachment. Square root of 683.95 up to 2 decimal places. ⇒ √683.95 = 26.15 Thank you very much. VVVAnswer 1. Least number that must be added to 9598 to make it a perfect square.                97.96           ____________     9    |   9598.0000     9    |   81           |______    187 |   1498        7 |   1309             |_______ 1949  |    18900         9  |    17541           |__________ 19586 |      135900            6 |      117516           |__________           |        18384 Therefore, √9598 = 97.96 And, the nearest perfect square is 98². ⇒ 98² = 9604 ⇒ 9604 - 9598 = 6 So, 6 is the least number which must be added to 9598 to make it a perfect square. ⇒ 9598 + 6 = 9604 And, √9604 = 98 _____________________________________________________________ Answer 2. Least number which must be subtracted from 2361 to make it a perfect square.              48           __________     4   |  2361     4   |  16            |______   88   |    761     8   |    704                  |_______   96   |      57            | So, on finding the square root of 2361, we get the quotient as 48 and the remainder as 57. Hence, we will subtract 57 from 2361 to get the number which is a perfect square.   ⇒ 2361 - 57 = 2304 ⇒ √2304 = 48 Therefore, 57 is the least number which must be subtracted from 2361 to make it a perfect square. _____________________________________________________________ Answer 3 For the answer of the 3rd question, please have a look at the attachment. Square root of 683.95 up to 2 decimal places. ⇒ √683.95 = 26.15 Thank you very much.



Discussion

No Comment Found